Rotordynamic Fluid Film Bearing Analysis:

Navier-Stokes Equations vs. Reynolds Equation

Prepared By:

Rotordynamics-Seal Research

website: www.rda.guru

email: rsr@rda.guru

Presentation Overview

- > Objective
 - Illustrate Difference Between Governing Equation Options
 - » Navier-Stokes (N-S)
 - » Reynolds Equation (ReEq)
- > Methodology
 - Presentation will Focus on Select Bearing Analysis Results
 - » Prediction of Journal Location within its Bore
 - **Dynamic Coefficients are Directly Related to Journal Location**
 - » Various Flow Conditions
 - B Highly Laminar to Fully Turbulent
 - Presentation is Not Going to Cover the Math
 - » Math is Well Documented in Many Sources, including:
 - **Fluid Film Lubrication Theory & Design by Andres Z. Szeri, 1998**

Table of Contents

- Background
 - Reynolds Equation is Derived From the N-S Equations by Making Simplifying Assumptions
 - » Primary Assumption: Neglect Inertia Effects
 - Implications of Ignoring Inertia
 - » Eliminates Momentum Equations
 - Primary Advantage:
 - Greatly Simplifies Solution
 - Faster Runs, Simpler Solution Algorithm
 - Primary Disadvantage:
 - Loss of Ability to Accurately Model Basic Bearing Effects
 - **Shear Stress**
 - Turbulence
 - **Rotor Speed**
 - **Surface Roughness**
 - **Fluid Compressibility**
 - **Non-Newtonian Fluids**
 - Low Eccentricity Bearings

Sample Calculations: Set 1

- > Journal Bearing Analysis
 - 2 Lobe Fixed Geometry Bearing
 - » Circular Bore (Zero Preload)
 - » Load on Pad
 - » Isoviscous Lubricant
 - » Rotor Diameter = 2 inches
 - » Rotor Speed = 10000 rpm
 - Maximum Reynolds Number (Re#) on Loaded Bearing Surface: ~60

Highly Laminar Flow Results

Highly Laminar Flow Results

- > Journal Bearing Analysis: Max. Re# ~60
 - Discussion of Results:
 - » Note: All Data Points Shown are For Identical Applied Loads
 - » Reynolds Equation Results Are Virtually Identical N-S Results For Operating Conditions that Yield High Journal Eccentricities (e > 50%) & Highly Laminar Flow
 - » Inertia Affects the Solution For Operating Conditions that Yield Low Journal Eccentricities (e < 50%) & Highly Laminar Flow
 - e < 20%: Inertia Effects are Significant
 - e < 10% : Inertia Effects Dominate the Solution

Sample Calculations: Set 2

- > Journal Bearing Analysis
 - 2 Lobe Fixed Geometry Bearing
 - » All Conditions Identical to Set 1 Calculations Except Rotor Speed
 - » Rotor Speed = 60000 rpm
 - Maximum Re# on Loaded Bearing Surface: ~400

Laminar Flow Results

Laminar Flow Results

- ➢ Journal Bearing Analysis: Max. Re# ~400
 - Discussion of Results:
 - » Note: All Data Points Shown are For Identical Applied Loads
 - » Reynolds Equation Results Are Nearly Identical to N-S Results For Operating Conditions that Yield High Journal Eccentricities (e > 75%) & Laminar Flow
 - » Inertia Affects the Solution For Operating Conditions that Yield Low Journal Eccentricities (e < 75%) & Laminar Flow
 - e < 60%: Inertia Effects are Significant
 - e < 10% : Inertia Effects Dominate the Solution

Sample Calculations: Set 3

- > Journal Bearing Analysis
 - 2 Lobe Fixed Geometry Bearing
 - » All Conditions Identical to Set 1 Calculations Except Rotor Speed and Viscosity
 - » Rotor Speed = 40000 rpm
 - Maximum Re# on Loaded Bearing Surface: ~8000

Transitional Flow Results

Transitional Flow Results

- > Journal Bearing Analysis: Max. Re# ~8000
 - Discussion of Results:
 - » Note: All Data Points Shown are For Identical Applied Loads
 - » Reynolds Equation Inaccurate At All Eccentricities
 - Results Only In the Ball Park for The Two Highest Eccentricity Cases (e > 80%)
 - » Inertia Effects Substantial At All Eccentricities

Sample Calculations: Set 4

- > Journal Bearing Analysis
 - 2 Lobe Fixed Geometry Bearing
 - » All Conditions Identical to Set 1 Calculations Except Rotor Speed and Viscosity
 - » Rotor Speed = 60000 rpm
 - Maximum Re# on Loaded Bearing Surface: ~70000

Fully Turbulent Flow Results

Fully Turbulent Flow Results

- Journal Bearing Analysis: Max. Re# ~70000
 - Discussion of Results:
 - » Note: All Data Points Shown are For Identical Applied Loads
 - » Reynolds Equation Inaccurate At All Eccentricities
 - Results Only In the Ball Park for The Two Highest Eccentricity Cases (e > 80%)
 - » Inertia Effects Substantial At All Eccentricities

Reynolds Equation Summary

- All Reynolds Equation Analysis Results (Fixed Geometry) are Plotted On the Following Page
 - Review of the Plot Shows:
 - » Reynolds Equation Offers a Binary Solution
 - **Flow is Laminar (lower curve) or Turbulent (higher curve)**
 - Locus of Centers, Regardless of Geometry or Operating Conditions, Will Fall on One of the Two Curves
 - Location on Curve Based Upon Sommerfeld Number (viscosity, diameter, length, load, clearance, and speed)
 - » Reynolds Equation Implicitly Assumes Away the Non-Linear Relationship Between Reynolds Numbers and Rotational Speed (i.e. ROTOR SPEED AND FLOW CONDITIONS DO NOT MOVE THE CURVES)

Reynolds Equation Summary

Navier-Stokes Summary

- All Navier-Stokes Equations Analysis Results (Fixed Geometry) are Plotted On the Following Page
 - Review of the Plot Shows:
 - » Navier-Stokes Equations are NOT a Binary Solution
 - Inertia Related Non-Linearities Prevalent Even in Laminar Flow
 - **Capable of Capturing Laminar to Turbulent Transitional Effects**
 - Note Such Effects Persist Up to Re# ~ 10000
 - Locus of Centers Curve Shape Determined Uniquely for Set of Geometry/Operating Conditions Analyzed
 - Curve May Assume Any Path Between the Fully Laminar and Fully Turbulent Flow Bounds
 - » Navier-Stokes Based Solution Implicitly Embodies a Non-Linear Relationship Between Reynolds Number and Rotor Speed (i.e. ROTOR SPEED AND FLOW CONDITIONS MOVE THE CURVES)

Navier-Stokes Summary

Summary

- Reynolds Equation Based Bearing Analysis Only Agrees with N-S Based Analysis Under Certain Circumstances
 - Low Rotational Speeds (< ~10000 rpm) AND
 - Low Reynolds Numbers (< ~60) AND
 - **Operating Conditions that Yield Eccentricities > 50%**
- Reynolds Equation Based Bearing Analysis <u>MAY DIFFER</u> <u>RADICALLY</u> from N-S Based Solutions Under All Other Flow and Operating Conditions

Tilt Pad Bearing Analysis

- Utilizes the Same N-S Stokes Film Solver as Fixed Geometry Bearings
 - Additional Iteration Loop Employed to Solve Pad Positions
- Pivot Models
 - Most Codes Assume Pads Rotate About a Point on the Load Bearing Surface
 - RSR has Implemented Advanced Pivot Models to More Accurately Represent the Motion of the Pad
 - » Pin Pivot
 - » Rocker Back
 - » Ball/Socket
- Sample Analysis Conducted to Match Test Data
 - 5 Pad, Rocker Back Bearing with Load Between Pads

Tilting Pad Test Data Comparison

Reference: Measurements of the Steady State Operating Characteristics of the Five Shoe Tilting Pad Journal Bearing, K.R. Brockwell and D. Kleinbub, Tribology Transactions, 1989, pg 267-275

Tilting Pad Test Data Comparison

Reference: Measurements of the Steady State Operating Characteristics of the Five Shoe Tilting Pad Journal Bearing, K.R. Brockwell and D. Kleinbub, Tribology Transactions, 1989, pg 267-275

Tilting Pad Test Data Comparison

- Notes on Test Data
 - Rotor Position Measurement was Sub Optimal
 - » 2 Sets of 2 Proximity Probes at Each End of Bearing
 - » Reported Results are the Average of the Two Readings
 - Tests Utilizing 2 Sets of 4 Proximity Probes with Results Reported Independently Would Yield Better Data
- Comparison With Test Data
 - Maximum Re# on Loaded Pads Varies Between 18 and 45
 - Both N-S and ReEq Models Produce Reasonable Results
 - N-S Predictions are Superior at Low Eccentricities (<50%)
 - N-S with Advanced Pivot Model Provides Superior Predictions at Low Eccentricities (<35%)

